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§  Co-design: A collaboration between vendors, hardware 
architects, system software developers, domain 
scientists, computer scientists, and applied 
mathematicians working together to make informed 
evaluations about hardware and software components 
necessary for a successful transition to exascale 

§  Proxy applications: The “language of co-design”. They 
are simplified representations of algorithms, data motion 
patterns, and coding styles used to do early evaluation 
of trade-offs in the hardware and software design space 
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What is Co-design? 
•  Deep collaboration… (See previous slide) 

How Does Co-design Work? 
•  Hardware vendors provide access to future 

roadmaps 
•  Researchers develop new software methodologies 
•  Application developers provide “proxy applications” 

for open study of software requirements 

How is this different from past practice? 
•  Time-frame (5-10 years) 
•  Co-dependence on successful HPC strategy 

What are the challenges of co-design? 
•  Unclassified proxy applications are required 
•  Deep NDA and trust with multiple vendors 
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Co-design gets more difficult the further you get from open 
collaboration and the closer you get to the “truth” (particularly 
with competing vendors and national security applications) 

Open Co-design 
•  Released Proxy 

Apps 

•  Open vendor 
information 

Unclassified, 
but not open 
applications 

National  
Security 

Applications 
Standard 

NDA 
Deep NDA 

ASC concerns Vendor concerns 

•  ASC : Involve staff with clearances in co-design efforts and developing 
proxy apps 

•  Vendor : Limit number of lab staff engaging in multiple “deep NDA” 
discussions 
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§  ExMatEx, CESAR, and ExaCT are ASCR-funded 
co-design centers 
•  2 of 3 led at NNSA labs 
•  Lots of opportunity for cross-fertilization between NNSA and 

Office of Science 

§  Co-design centers are designed to be application-
centric 
•  NNSA already has the applications, but they’re typically not 

open (export controlled / classified) 

§  NNSA/ASC co-design effort - NSApp CDP 
•  National Security Applications (LANL / LLNL / SNL) 
•  See paper at codesign.llnl.gov 
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§  Support broad ranges of applications 
§  > 10 packages, 10-30+ third party libraries 
§  Many different spatial, temporal scales  
§  Multi-language (C++, C, Fortran90, Python) 
§  Variety of parallelism approaches 
§  Long life-time projects with >1 million lines of 

code 
§  15+ years of development by large teams  

(10 – 20+ FTEs) 
§  Steerable / interactive interfaces 
§  Algorithms tuned for minimal turn-around time 

(vs. max compute efficiency) 
§  How future physics model improvements will 

impact compute balance between packages 
is unknown Average of 60Kloc/year of additional 

code to support in a representative IC 

ALE3D 

Source code 
size over 
time 900 kloc 

The difficulty is compounded by continuing to deliver the programmatic mission while 
addressing the challenges of next generation advanced architectures. 
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Research 
and 

conception of 
idea 1-5y 

Proof of 
concept 
product 1-3y 

Hardened 
product 

(suitable for 
prototyping) 

2-4y 

Community 
buy-in & 

“standards” 2-4y 

Re-
implement 
application 4-6y 

First Users / 
Feedback 

1-3y 

Full-featured 
1-5y 

Validated for 
Mission 

1-3y 

Production 
use until 

retirement 

Research =  
6 – 15 years to 
fruition 

Rewrite =  
7 – 16 years to 
replacement 
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•  Gain experience with massive 
scaling (Sequoia / BlueGeneQ) 

•  Expose fine-grained concurrency 
•  Accelerator directives 
•  Application controlled resilience 

and power management 
•  Leverage validated code base 
 

•  Evaluate and gain experience with 
new programming models 

•  “Harden” them beyond research 
prototype phase 

•  Determine degree of rewrite 
needed (if any) 

Evolve existing code bases Undertake new “from 
scratch” rewrite 

? 

At a minimum, we 
know we’re going to 

have to do this. But will 
it take us far enough? 

 

New languages and a 
clean slate approach 
are compelling, but 
can we manage the 

risk? 
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1) Evolve current ICs to run effectively on Sequoia  
 (0 – 4 year scope) 

2) Develop modular packages (evolve or rewrite) for Sequoia 
and beyond  

 (0 – 8 years) 

3) Revolutionary approaches as basis for next generation code  
 (3 – 15 years) 

4) New programming models and parallelization strategies
 (5 – 20+ years) 

Refurbish 

Replace 

Reuse 

Our Challenges are not tied to the pursuit of exascale computing. 
Future architectures at extreme scale (100’s of Pf) are just as demanding. 
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Algorithms 
• Mesh-based, 

particles, solvers, 
structural, CFD, 
etc… 

• Discretization 
methods 

Breadth 
•  Targeted to a 

specific purpose 
•  Generally 

representative 
and multi-
purpose 

Audience 
• Hardware 

designers 
• Software 

designers 

Modernness 
• Extraction of 

existing application 
• Exploration of 

future application 

•  One must consider a 
broad range of proxy 
applications to even 
begin to cover the 
design space of an ASC 
application 

•  Proxy apps are more 
than just a benchmark. 
They are meant to be 
modified – perhaps 
dramatically 

•  Interoperability of 
software solutions is key 
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§  What is the right balance between too big to understand, 
and too simple to be representative? 

Small [O(1k loc)] 
 

Pros – Easy to pick up and learn 
Cons – Hard to draw general 
conclusions from 

Larger [O(25-75k loc)] 
 

Pros – Likely more 
representative of real applications 
Cons – Some benefits are lost to 
added complexity and size 

Understand: Small proxy applications are often gross approximations of 
reality. Be careful of the conclusions you draw! 
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§  LULESH  
•  Ported to 8+ programming languages – allowed an unprecedented comparison. (IPDPS 

Best Paper 2012) 
•  Helped influence development of Chapel, Liszt, Charm++, … 
•  Used in ExMatEx co-design center to great effect in FastForward interactions 

§  LCALS 
•  Allowed rapid identification of optimization issues with multiple vendor compiler teams. 

§  AMG / UMT / MCB / LULESH / SNAP 
•  Repurposed as TN8/CORAL benchmarks (NNSA 2015-17 large scale procurements) 
•  Co-design has influenced changes in how we do procurement benchmarking 

§  Lassen 
•  First (?) example of Charm++ used as a library component 

Numerous examples of proxy apps giving students and new hires a jump start 
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•  Derived from BoomerAMG in LLNL’s hypre solver library 
•  Representative of implicit solves performed in large 

unstructured applications 
Description 

•  Stresses memory bandwidth 
•  Irregular communication patterns and memory accesses 
•  Fine-grained threading 
•  Acceleration 

Characteristics / 
Uses 

•  C (~70k loc) 
•  MPI 
•  OpenMP 

Language(s) / 
Size 



Lawrence Livermore National Laboratory LLNL-PRES-647480 

14 

•  Little or no real physics – just a “particle pusher” 
•  Object-oriented design Description 

•  Low floating point intensity, large amount of branching 
•  Irregular memory and communication patterns 
•  Could be used for exploration of alternatives to MPI (e.g. 

PGAS), transactional memory,  

Characteristics / 
Uses 

•  C++ (~13k loc) 
•  MPI 
•  OpenMP 

Language(s) / 
Size 
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•  Front-tracking algorithm used to propagate wave-fronts and 
pre-calculate arrival times 

•  Work is isolated to a narrow region around the front 
Description 

•  Highly load-imbalanced (1D front in a 2D mesh) 
•  Similar issues to sweep-based algorithms 
•  Studying task-based parallelism or dynamic load balancing 
•  Interoperability of MPI and other prog. models (e.g. Charm++) 

Characteristics / 
Uses 

•  C++ (3,500 loc) 
•  Charm++  
•  MPI 

Language(s) / 
Size 
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•  Unstructured mesh 
•  Small in size – about 12 representative kernels 
•  Ported to numerous different programming models 
•  Version 2.0 released in 2013 

Description 

•  Unstructured mesh data structures (indirection) 
•  Analysis of thread overheads in OpenMP 
•  Port to various programming models 

Characteristics / 
Uses 

•  C++ (5k loc) 
•  MPI / OpenMP 
•  A++, Chapel, CUDA, OpenACC, Loci, Liszt, Charm++ 

versions available 

Language(s) / 
Size 
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•  Livermore Compiler Analysis Loop Suite 
•  Based on classic “Livermore Loops” from the 70’s-80’s 
•  ~30 representative loop kernels 
•  Easy framework to extract individual loops, add new ones 

Description 

•  Primarily designed to work with compiler vendors on 
optimizations (e.g. SIMD) 

•  Multiple versions: “Raw”, “Lambda/RAJA”, cilk plus, … 
•  Some loops large enough to study threading / runtimes 

Characteristics / 
Uses 

•  C++ (4k loc) 
•  OpenMP 

Language(s) / 
Size 
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•  Includes some simpler mini-apps (Duckling, Hatchling) as well 
•  Built on top of MFEM library Description 

•  Coupled implicit solve methods 
•  Use of abstractions in design of finite-element based apps 
•  Ability to modify spatial ordering of the mesh 
•  Useful to study acceleration, transactional memory, …  

Characteristics / 
Uses 

•  C++ (46k loc) 
•  OpenMP 

Language(s) / 
Size 
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•  1D/2D tabular interpolation library 
•  Builds sets of tabular data for repeated lookups 
•  Basis for Equation-of-State calculations 

Description 

•  Designed to study memory hierarchies 
•  Sharing of data between MPI processes on same node 
•  Effective caching strategies for NUMA architectures 
•  Threading strategies 

Characteristics / 
Uses 

•  C (11k loc) 
•  MPI driver to spawn multiple copies (no communication) 

Language(s) / 
Size 
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•  3D Unstructure mesh advection 
•  Complex data motion – fluxing of material through element 

faces 
•  No physics (velocities), just mesh relaxation and material flux 

Description 

•  Useful counterpart to LULESH for understanding ALE 
(arbitrary lagrange eulerian) 

•  Irregular memory accesses, lots of p2p communication 
•  Element ordering, acceleration, … 

Characteristics / 
Uses 

•  C++ (26k loc) 
•  MPI 
•  OpenMP (in later versions?) 

Language(s) / 
Size 
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Proxy Type Lang LOC Description Example uses 

AMG2013 Mini C++,  
MPI,  
OMP 

75k Algebraic multi-grid. Irregular 
memory and comm. Subset of 
hypre solver library.  

Investigating acceleration methods, 
thread performance, irregular 
network access patterns 

Lassen Mini C++,  
Charm++ 

3.5k Front tracking through a 2D mesh. 
Work is concentrated at front, 
leading to high load imbalance. 

Exploring task-based programming 
models and load balance strategies 
 

LCALS Skel C++,  
OMP 

4k Updated “Livermore Loops”. ~30 
loops in a common analysis 
framework.  

Compiler optimizations. Vectorization 
and thread models. 
 

LULESH 
(v2.0) 

Mini C++,  
MPI, 
OMP 

5k Lagrangian hydro on arbitrary 
connected hex mesh. 2.0 includes 
regions, and unified ser/par source. 

New programming models and 
alternate languages. Overall 
performance characteristics of hydro 

MCB Mini C++,  
MPI 

13k Monte Carlo Particle transport, Low 
floating point intensity. Lots of 
integer and branching 

Threading, transactional memory, 
acceleration, irregular messaging, 
PGAS 

Mulard Mini C++ 46k Implicit multigroup radiation 
diffusion. Built on MFEM library. 

Matrix solution techniques. Finite 
element abstractions. 

LIP Skel C Library for doing 2D interpolation on 
large tabular data 

NUMA techniques. Sharing data 
between MPI tasks. 

LUAU Mini C++, MPI Multi-material advection on arbitrary 
connected hex mesh 

Impact of memory indirection, 
bandwidth intensive. 

UMT Mini C++, C, 
F90, Py 

Radiation transport. Unstructured 
mesh sweep. 

Interconnects (large messages). 
Memory bandwidth and capacity. 

http://codesign.llnl.gov 
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§  Get latest 
versions of 
LLNL proxy 
apps 

§  Contact 
developers 

§  References 
to other co-
design 
efforts 
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§  PSAAP centers have a unique opportunity to inject changes in 
NNSA code development processes 
•  Exascale is driving disruptive changes. 
•  Both sides (NNSA/Univ) must push exascale research concepts into 

complex applications 

§  Communicating CS concepts developed at your centers  
through simpler proxy apps is an effective method 

§  We invite you use our proxy apps 
•  Developing a DSL or other abstraction? Test it on multiple proxy apps 
•  Ask us questions – don’t assume anything! 
•  Communicate back your changes to us (we learn from them as well) 

§  We expect to engage in co-design with you 
•  We can be a conduit to the vendor community for you 




